
EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  
 

 

 

 

 

Evaluating the performance of NoSQL and Time Series databases using TSBS 

 

 

 

A Project Report 

 
Presented to  

 

Dr. Chris Pollett 

 

Department of Computer Science 

San José State University 

 

 

 

In Partial Fulfillment 

 

Of the Requirements for the 

Class CS 297 

 
 

By 

 

Aarsh Patel  

May 2023



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS 

 

 

ABSTRACT 

 
Time series are measurements or events that are tracked, monitored, down-sampled, and 

aggregated over time. The use of time series data has increased recently as time series data is 

essential in many domains such as finance, IoT, and scientific research, which requires efficient 

storage and retrieval of large amounts of data over time. Time series data is used for real-time 

monitoring, analytics, and forecasting. Many time-series databases are developed with a focus 

on storing such time-series data. Traditional NoSQL databases like MongoDB and Cassandra 

can also store time series data. This research aims to benchmark different time series and 

NoSQL databases using a benchmarking suite called Time Series Benchmarking Suite (TSBS). 

TSBS supports many time series and NoSQL databases. This project aims to evaluate the 

performance of four databases (3 time series and MongoDB) against various queries. Metrics 

like data storage footprint and read and write performance of databases will be the basis of the 

research question on how traditional NoSQL databases perform against time series databases to 

store time series data. 

Keywords: Time Series Data, TSBS, Time Series Database Suite, NoSQL, MongoDB, 

TimescaleDB, InfluxDB, QuestDB



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS 

 

 

TABLE OF CONTENTS 

 

I. INTRODUCTION ............................................................................................................................................... 1 

II. DELIVERABLE 1.............................................................................................................................................. 3 

III. DELIVERABLE 2 ............................................................................................................................................ 5 

IV. DELIVERABLE 3 ............................................................................................................................................ 7 

V. DELIVERABLE 4 ........................................................................................................................................... 12 

VI. CONCLUSION ............................................................................................................................................... 16 

REFERENCES ...................................................................................................................................................... 18 

SCREENSHOT OF EXPERIMENTS .................................................................................................................. 18 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
1 

 
I. INTRODUCTION 

 

A time-indexed set of data points is called "time-series data." These data points, which 

track change over time, typically consist of successive measurements taken from the same source 

during a specified time interval [Paul,1]. In many fields, including finance, IoT, and scientific 

research, where adequate long-term data storage and retrieval are crucial, time series data is 

becoming increasingly significant. Time series data is becoming increasingly important, which 

necessitates the development of effective mechanisms for storage and retrieval that can deal with 

the massive volume of time series data. In recent years, numerous databases like InfluxDB, 

TimescaleDB, and QuestDB have been created to store time series data. NoSQL databases like 

MongoDB and Cassandra have also become viable choices for storing time series data. 

The database for storing time series data will vary depending on the volume of data, the 

data structure, the types of queries, and the required performance. Benchmarking is a tried-and-

true method for assessing how well various database systems perform in multiple scenarios. This 

research compares the performance of time series and NoSQL databases for storing time series 

data through a benchmarking suite called Time Series Database Suite (TSBS). InfluxDB, 

TimescaleDB, QuestDB, and MongoDB are the databases whose performance is assessed against 

various queries. Metrics like data storage footprint and read and write performance of databases 

will be the basis of the research question on how traditional NoSQL databases perform against 

time series databases when storing time series data. 

The project is divided into four deliverables, each detailed in different sections of this 

report. Deliverable 1 involves researching time series data, its advantages, and time series 

databases and their properties. Deliverable 2 focuses on finding a benchmarking suite and 

finalizing the suite and the databases. Deliverable 3 involves studying the benchmarking suite, 

including the different steps to execute the benchmarking. Also, the study of the databases and 

their features is included in this deliverable. Deliverable 4 is the implementation of the 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
2 

benchmark with a small dataset with decided databases and queries, analyzing the results, and 

answering the research question. Finally, a conclusion is offered that summarizes my 

benchmarking results and responds to the project's research topic.



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
3 

 

II. DELIVERABLE 1 

 

The goal of the first deliverable is to do a study on time-series data and databases to get 

an idea of their importance in the real world. This was achieved by researching time series data, 

databases, and their uses. As time series databases are used for benchmarking, it is crucial to 

understand them, their desired properties, and current database rankings. This deliverable was 

necessary for learning the basics of time series data and databases.  

Time series data is critical, as discussed earlier. The main distinction between time series 

data and regular data is that time series data is primarily questioned across time. These days, the 

bulk of businesses produce an absurdly huge stream of measurements and events, which shows 

the importance of time series data and necessitates the need for databases specifically designed 

for storing time series data [1]. Time series data is used in domains like DevOps, IoT, and real-

time analytics to enable efficient and effective monitoring and analysis. Time series data is used 

in DevOps monitoring [1] to keep track of the performance and overall health of systems and 

applications. A time-series database is used by developers and operations teams to track the 

system over time and spot trends or problems. This database collects and saves metrics like 

CPU utilization, memory consumption, network latency, and disk I/O. In IoT, the data generated 

by sensors and devices is stored in a time series database [1], enabling real-time analysis and 

monitoring of devices and their environments. Time series data are used in real-time analytics to 

analyze data streams and produce insights or forecasts.  

 With such high demand and use cases, time series data must be stored in specialized 

databases, as relational databases have scalability problems and cannot efficiently store data 

with time stamps. A time series database (TSDB) is tailored for time series data and explicitly 

designed to handle timestamped metrics, events, or measurements. A TSDB enables users to 

store, update, destroy, and organize [Naqvi, Yfantidou, and Zimanyi , 2] different time series 

data and is designed to handle large amounts of data.  



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
4 

Time-series databases have some required properties that make them suitable for storing 

and querying time-series data. The first property is that TSDB should be able to group data 

based on periods, making access to data and querying faster [2]. Another property is that the 

query language used in the database should make writing queries easier. As time-series data is 

continuously generated, the database should be designed to be highly available and scalable [2], 

as it should be able to handle large amounts of data with ease. Also, the database should be user-

friendly and support many standard functions and operations common among time series 

databases, such as retention policies, aggregation, and range queries. 

Many TSBS has been developed as the popularity of time series databases has increased 

recently. The database should be chosen depending on the requirements, ease of usage, and cost. 

A database ranking site called db-engines ranks databases based on popularity. Figure 1 shows 

the current rankings of time series databases. This will be helpful in Deliverable 2 when I have 

to finalize the benchmarking suite and the databases I will use for benchmarking. 

 

Figure 1: TSBS rankings for May 2023  



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
5 

III. DELIVERABLE 2 
 

Deliverable 2 involves finding a benchmarking suite for executing the benchmarking of 

different databases. Before finalizing the benchmarking suite, it is necessary to understand it, the 

databases it supports, and the metrics we can perform and evaluate, as these features determine 

if the suite is a good choice for benchmarking. My findings for this deliverable are reported in 

the following paragraph. 

A benchmark suite is a group of tests or benchmarks created to evaluate a specific 

system's effectiveness, efficiency, and performance [Struckov, Yufa, Visheratin, and Nasonov, 

3]. Several use cases from the real world are frequently included in the benchmark suite. 

Benchmark suites are used to examine and compare the effectiveness of various systems or 

components, enabling unbiased and quantitative evaluations. For databases, the benchmarking 

suite is used to compare the 

performance of different databases' scalability, read/write performance, CPU, and memory 

usage. 

 The first benchmark I decided to use was the TS benchmark. The GitHub for the 

benchmarking is https://github.com/dbiir/TS Benchmark. This suite supported 4-time series 

databases. The steps to complete the test were generating the data, importing the data into the 

databases, configuring the parameters, and running the tests. The building of the benchmarking 

suite and downloading the databases locally were successful. However, generating the data and 

loading part got errors as a load.data file is missing from the original code. The error is shown in 

Figure 2. There is an issue raised on GitHub regarding that, but no update or solution to the bug is 

out yet, which resulted in finding a new benchmarking suite to perform the benchmarking. 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
6 

 

Figure 2: TS-benchmark error  

I found another benchmarking suite called Time Series Benchmarking Suite (TSBS). 

This suite supports many time series and NoSQL databases like MongoDB and Cassandra. The 

GitHub repository for the suite is https://github.com/timescale/tsbs.The suite is relatively new, 

and more updates are given periodically. I selected 4 databases for the benchmarking and 3 time 

series databases from the rankings provided by the DB-engines website [DB-Engines ranking 

,4]. As shown in Figure 1, InfluxDB, TimescaleDB, and QuestDB are the top time-series 

databases supported by the benchmarking suite, so these three will serve as the time-series 

database, and MongoDB will be the NoSQL database. So, in this deliverable I used two 

benchmarking suite, TS-Benchmark and TSBS and finalized TSBS as the suite I will use for 

benchmarking.

https://github.com/timescale/tsbs


EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
7 

 

IV. DELIVERABLE 3 

 

This deliverable analyzes the features of NoSQL databases and the four databases 

selected for benchmarking. Also, studying the benchmarking code and exploring its features is 

included in this deliverable. It is essential to look at the features of NoSQL databases before 

learning MongoDB and other time-series databases. 

NoSQL (Not Only SQL) databases are a database management system [Han, Le, and Du , 

5] that provides a flexible and scalable approach for handling large volumes of unstructured data. 

NoSQL databases address conventional relational databases' scalability, performance, and data 

flexibility issues. They provide attributes including high availability, flexible schemas, and 

horizontal scalability. NoSQL has BASE properties as opposed to the ACID properties of 

relational databases. First, regarding ACID properties, ACID stands for atomicity, consistency, 

isolation, and durability. These properties ensure trustworthy transaction processing in a database 

system [Abramova and Bernardino ,6]. If any component of an ACID transaction fails, the entire 

transaction is rolled back, leaving the database in a consistent state. This ensures that database 

operations are carried out as an indivisible unit. For NoSQL databases, BASE stands for 

Basically Available, Soft State, and Eventually Consistent. BASE is a set of guidelines that some 

NoSQL databases [6] use to design and operate, especially those that place high availability and 

scalability over precise consistency. The immediate consistency guarantee offered by ACID 

transactions is replaced by eventual consistency in BASE properties, as in the BASE database, 

the modifications spread over time, and the system finally converges to a consistent state. 

There is a theorem called the CAP theorem. CAP stands for Consistency, Availability, 

and Partition Tolerance (CAP), which says it is impossible to concurrently satisfy all three 

properties in a distributed database system [5]. Partition tolerance ensures that the system keeps 

working even with network partitions. Consistency describes how all nodes in the system have 

the same data simultaneously, and availability describes how every request receives a response. 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
8 

The CAP Theorem states that a distributed system must decide between consistency and 

availability when a network partition occurs. The next part of this deliverable is about the 

distinguished properties of NOSQL that make them different from traditional databases and an 

overview of the types of NOSQL databases. 

Some of the features of NoSQL databases are scalability, flexibility, and high 

performance. NoSQL databases can scale horizontally, handling large amounts of data [5] and 

high traffic loads by adding more hardware. NoSQL databases provide flexibility by offering a 

flexible schema that helps accommodate unstructured or changing data models without 

predefined schemas. NoSQL databases are optimized for read- and write-intensive workloads, 

thus providing faster data processing. The common types of NoSQL databases are column-

based, document-based, key-value paired-based, and graph-based. Column-based databases are 

optimized for queries over large datasets and store columns of data together instead of rows [5]. 

Here, each row can have different columns. E.g., Cassandra, Amazon DynamoDB. In document-

based databases, each key is paired in a document-like data structure, such as tree data, 

consisting of maps and scalar values [5]. E.g., MongoDB. In a key-value pair database, every 

item is stored as a key and its value [5]. E.g., CouchDB. Lastly, in the graph-based database, 

data can be represented as a graph [6], for example, social networks. E.g., Neo4J, Infinite Graph. 

This section briefly overviews the features of the four databases that will be 

benchmarked. The first database is MongoDB. MongoDB is a NoSQL database developed in 

C++. It is a non-relational database that supports complex data types, like BJSON [5] data 

structures, to store complex data types. The data is stored as documents, which can be nested 

and contain arrays and other complex data types. MongoDB supports indexing and aggregation, 

enabling efficient data retrieval and processing. Also, replication and sharding [5] enable high 

availability, scalability, and fault tolerance. The second database is InfluxDB. InfluxDB is an 

open-source schema-less time series database written in the Go programming language. It 

supports an SQL-like query language [2] and supports sharding, which stores data in groups, 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
9 

thus optimizing data retrieval and querying. The third database is TimescaleDB, which is an 

open-source time series database written in C and extends PostgreSQL. 

TimescaleDB supports standard SQL queries, and its table structures, called hyper table, 

provide easier access to data and efficient querying. TimescaleDB also supports data 

compression and replication, [Timescale docs ,7] which helps in efficient data storage. The last 

database is QuestDB, which is an open-source relational time-series database optimized for 

speed and low latency. It supports SQL querying and indexing and provides full ACID 

compliance [8] and transaction support. QuestDB also provides a columnar storage format and 

has a built-in time series extension that provides time-series functionality. I am using my Mac 

M1 for executing the benchmarking. I used Brew to install and configure the databases. Figure 3 

shows the status of brew services, showing the successful installation of the databases and 

services running on Mac. 

 

Figure 3: Database running instance.  

 The next part of this deliverable is to look at the benchmarking suite and the different 

steps required for performing the benchmarking. The suite is a collection of GO programs and 

supports various use cases like CPU-only, DevOps, and IoT. There are different time series and 

NoSQL databases supported, as well as many queries to evaluate the write performances of the 

databases. The benchmarking steps are data generation, data loading, query generation, and 

query execution. The first step is data generation. The data can be generated according to the 

requirements, as we can specify parameters like the use case, PRNG seed, number of devices, 

time duration, and target database. The data is generated randomly, but it is deterministic if we 

supply the same PRNG value for each database. The following are the available parameters: 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
10 

1. Use case (CPU-only, DevOps, or IoT) 

2. PRNG seed for deterministic generation, E.g:123 

3. The number of devices, E.g., 4000 (This will determine the size of the dataset) 

4. A start time, E.g., 2023-04-01T00:00:00Z 

5. An end time, E.g., 2023-04-02T00:00:00Z 

6. The time between each reading, E.g:10s 

7. Target Database, E.g., mongo (name determined for MongoDB) 

The following is the data generation code of an example dataset I generated for MongoDB for a 

day with a scale = 100 

tsbs_generate_data--use-case="cpu-only" --seed=123 --scale=100 --timestamp-

start="2023-04-01T00:00:00Z" --timestamp-end="2023-04-02T00:00:00Z" --log-

interval="10s" --format="mongo" /Users/spartan/tmp/mongo-data 

The second step is loading the data into the database. The mongo-data file generated above can 

be loaded in MongoDB using a specific loader file provided in the benchmark. The following is 

an example code of MongoDB's data loading of the above generated file. 

tsbs_load_mongo --file=/Users/spartan/tmp/mongo-data --document-per-event=true --

meta-field-index= “” --timeseries-collection=true --workers=10 

The third step is query generation. This is done using tssb_generate_queries, and the same 

parameters should be used as the data loading as the generated queries should match the data. 

So, I used the same use case, PRNG, number of devices, and start date. The end date should be 

kept one second longer than the generated date. We should also define the number of queries 

and their type. So, for the same example of MongoDB, the code is as follows: 

tsbs_generate_queries --use-case= “cpu-only” --seed=123 --scale=100 \ 

--timestamp-start="2023-04-01T00:00:00Z" \ --timestamp-end="2023-04-02T00:00:01Z" \ 

--queries=1000 --query-type="single-groupby-1-1-1" --format= “mongo” \ > 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
11 

/Users/spartan/tmp/mongo-queries-breakdown-single-groupby-1-1-1 

 

Figure 4: Data generation and query file. 

Figure 4 shows the data and query generated file in my Mac. The last step is query execution. 

After the database is set up correctly, data and queries are generated, and the data is loaded into 

the target database, we can use the tsbs_run_queries program to successfully run the target 

queries with the generated data for a particular database. We can specify the number of workers 

needed by setting the worker parameter. For the same example of MongoDB, the query can be 

executed with the following code: 

tsbs_run_queries_mongo --file=/Users/spartan/tmp/mongo-queries-breakdown-single-

groupby-1-1-1 --workers=1



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
12 

 

V. DELIVERABLE 4 

 

Deliverable 4 involves the implementation of a benchmark with the four databases. The 

performance of the databases is evaluated by metrics like data storage footprint and read and 

write performance. For read performance, I ran four queries from the list of available queries. 

The four queries are as follows: 

1. double-groupby-5: This query does multiple group-by by time and host_id. Returns the 

average of 5 metrics per host per day 

2. cpu-max-all-8: This query finds the maximum value for all metrics for 1 hour for 8 hosts. 

3. lastpoint: This query finds the latest reading for every device in the dataset. 

4. groupby-orderby-limit: This query does a single rollup on time to get the MAX reading of 

a CPU metric per minute for the last 5 intervals for which there are readings before a 

specified end time that is randomly selected. 

I decided to use a bigger dataset compared to the example dataset, as shown in 

Deliverable 3, with a scale of 1000 and a time duration of 3 days. I created the dataset and 

uploaded it to the databases, and then I calculated the read performance by developing and 

executing the four queries. The screenshots of the data loading and query implementation are 

included at the end of this report. After implementing MongoDB with the default Naive method 

of document-by-store, the query performance was worse than other time series databases. So, I 

used a better-recommended approach to store time series data in MongoDB, which is to 

aggregate the time series data into groups based on time. E.g., for each device, a document is 

created every hour. So, this contains a matrix with 60 times 60 (minutes and seconds) as the data 

is updated constantly. This data for an hour is stored as one document for a particular device. The 

document is updated accordingly when a reading is done, so there is no need to make a new 

document for every reading. This method resulted in much better performance. The results of the 

benchmarking are as follows: 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
13 

Data Storage Footprint Results: 

MongoDB: 23.72 GB 

TimescaleDB: 5.62 GB 

InfluxDB: 8.97 GB 

QuestDB: 8.97 GB 

Data Loading (Write Performance) Results: 

MongoDB (Naive): 246 sec 

MongoDB (Recommended): 123 sec 

TimescaleDB: 59 sec 

InfluxDB: 2.33 sec 

QuestDB: 20.68 sec 

Query Execution (Read Performance) Results: 

 double-groupby-5 cpu-max-all-8 

 

lastpoint 

 

groupby-orderby-limit 

 

MongoDB (Naive) 118 0.86 66.79 239 

MongoDB 

(Recommended) 

16.39 14.48 19.44 13.47 

TimescaleDB 30.94 1.05 0.35 0.24 

InfluxDB 27.84 0.44 11.60 83.66 

QuestDB 7.97 N/A 0.32 0.16 

 

 The first metric is the data footprint. Analyzing the results shows that TimescaleDB wins 

as it uses a compression technique to compress the generated data. InfluxDB and QuestDB have 

the same data size because there is a similarity in their storage structures, as both use SQL tables 

for storing data, resulting in similar sizes. Both MongoDB methods generated 24 GB of data 

because keeping each piece of data in a different document and chunking will result in the same 

data size.  



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
14 

 Analyzing the results of data loading, i.e., write performance, InfluxDB is the fastest 

when loading data as it uses a storage engine called the Time-Structured Merge Tree (TSM) [2], 

designed to write data quickly and compactly. Also, InfluxDB works very well with datasets with 

low cardinality, so it wins in write performance as the data used in this benchmark is relatively 

small. QuestDB is designed for high performance and offers several features to optimize write 

performance, such as vectorization and zero-garbage collection. TimescaleDB offers chunking 

and indexing [7], so grouping data help import data quickly, but it is slower than QuestDB. 

MongoDB does not support any special features for write performance, so the Mongo-naive 

approach takes minutes to insert the data. But changing 'document-per-event' to "false" helps the 

data to be grouped together, resulting in a lower time than MongoDB naive. 

 The last performance evaluation metric is read performance, i.e., query execution. Before 

discussing the results of time series databases, it is good to compare the performance of the two 

MongoDB implementations. We can see from the result that the recommended method has a 

considerable difference in efficiency. The data loading took almost half the time (246 vs. 123) 

due to aggregation, and the data can be quickly inserted into the database. This grouped data can 

also be filtered quickly, as we do not have to go to every document for query execution. So fewer 

documents result in the recommended method outperforming the naive approach in most queries 

by a significant margin. 

 TimescaleDB supports SQL and has a wide range of features like Group By 

functions and JOINS, which makes TimescaleDB a good choice for storing and querying time 

series data. TimescaleDB uses a unique hyper table concept [3] to partition data across time, 

which allows for efficient querying and analysis of time series data. In my benchmarking, I have 

used a chunk size of 12 hours, and the total duration of the data is 3 days. So, six hyper tables 

will be created for 12 hours, and all the data will be divided and stored according to the time 

stamp. As a result, TimescaleDB performed better than MongoDB and InfluxDB for queries like 

lastpoint and groupby, as grouping data in chunks makes it faster and more efficient to query. But 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
15 

the performance was worse for double-groupby queries and comparatively bad for cpu-max 

queries. But overall, it beats most of the databases in the benchmarking. 

The TSM Tree storage engine of InfluxDB helps store the data by data points in 

chronological order. This data is organized in sorted key-value pairs, with each pair 

corresponding to a specific timestamp [2]. Depending on the query, the data can be 

retrieved for the time range by looping over the key-value points. But InfluxDB does not 

allow joins, which makes queries using joins perform worse as the code must be made 

without joins to get the desired result. Also, InfluxDB works only with recent data 

(depending on the retention rate), so grouping can be done with recent times only, which 

makes it slow for groupby queries. As a result, InfluxDB performs worse for the groupby-

orderby queries, so it must take a longer route to loop the data and get the results. It also 

took InfluxDB more time to find the latest data reading as it performed worse than 

TimescaleDB and QuestDB for the lastpoitnt query. 

The last database is QuestDB. Like TimescaleDB, QuestDB also uses SQL and 

other operations designed explicitly for aggregation and querying time series data, like 

ASOF JOIN, SAMPLE BY, LATEST ON, and AGGREGATES [Introduction: Questdb , 

8]. Also, in QuestDB another important advantage of QuestDB is that the data is stored in 

columns and not rows, and fields like timestamps are accessed by columns, so querying is 

fast. As a result, QuestDB outperforms other databases because of its unique features. The 

'Latest On' operator lets Quest DB win in the last-point query. QuestDB wins by a big 

ratio in other groupby queries, showing how the storage and partitioning system and other 

features designed especially for data series data make QuestDB a better choice for time 

series data.



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
16 

 

VI. CONCLUSION 

 

This project aims to benchmark MongoDB against time series data to answer how NoSQL 

databases compare against traditional time series databases. Deliverable 1 introduced me to time 

series data and helped me understand its uses, properties, and time series databases. Deliverable 2 

focused on finalizing a benchmarking suite and the databases I will benchmark. The databases were 

finalized after looking at the current rankings of time series databases and those supported in the 

benchmark. Deliverable 3 involved familiarizing myself with the NoSQL databases, MongoDB, and 

the three time-series databases. This deliverable also included studying the benchmarking tool and 

steps and conducting the benchmarking with an example dataset and query, thus helping me 

understand the suite. Deliverable 4 involved benchmarking with 4 databases and 4 queries, analyzing 

the results, and providing a conclusion based on the metrics of data storage footprint and read and 

write performance. 

The conclusion of the benchmarking is provided in this paragraph. All four databases have 

their own advantages and disadvantages, so choosing the suitable database for time series data 

depends on factors like data size, simplicity, time, and resources. While MongoDB is the least 

performant, it is a good choice if the developers have expertise in NoSQL databases and are 

familiar with MongoDB. InfluxDB is not open source, so for multi-node requirements, it can be 

costly. Also, it will take time to learn InfluxDB, as it is not a simple database. TimescaleDB is 

an optimal choice as it supports SQL and has better read and write performance, as seen in this 

benchmarking. QuestDB also uses SQL and other special operators and is specially designed for 

time series data, making it an optimal choice based on other databases' benchmark results and 

performance. Comparing the NoSQL database, i.e., MongoDB, with specific time series 

databases, we can conclude that it is only an excellent choice to use as a time series database if 

the current requirements in the company already have a NoSQL database as other non-time-

based storage. So, suppose the application already uses MongoDB for non-time series data 

storage. In that case, using MongoDB for time-series data can be a good option, so the 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
17 

developers do not have to spend time learning a new database. Also, if the developers are 

proficient in SQL queries, then it is better to use time series databases like TimescaleDB and 

QuestDB, as they support SQL series and perform better than other databases. 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
18 

 

REFERENCES 
 

[1] D. Paul“Time Series Database (TSDB) guide: Influxdb,” InfluxData, 09-Feb-2023. [Online]. 

Available: https://www.influxdata.com/time-series-database/. [Accessed: 06-May-2023]. 

 

[2]  S. N. Z. Naqvi, S. Yfantidou, and E. Zimanyi, “Time series databases and influxdb.” [Online]. 

Available: https://jira.lsstcorp.org/secure/attachment/37574/influxdb_2017.pdf. [Accessed: 06-May-

2023]. 

 

[3] A. Struckov, S. Yufa, A. A. Visheratin, and D. Nasonov, “Evaluation of modern tools and 

techniques for storing time-series data,” Procedia Computer Science, vol. 156, pp. 19–28, 2019. doi: 

10.1016/j.procs.2019.08.125 

 

[4] “DB-Engines ranking,” DB-Engines. [Online]. Available: https://db-

engines.com/en/ranking/time+series+dbms/all. [Accessed: 06-May-2023]. 

 

[5]  J. Han, H. E, G. Le, and J. Du, “Survey on NoSQL database,” 2011 6th International 

Conference on Pervasive Computing and Applications, pp. 363–366, 2011. 

 

[6]  V. Abramova and J. Bernardino, “NoSQL databases: MongoDB vs Cassandra,” Proceedings of 

the International C* Conference on Computer Science and Software Engineering, pp. 14–22, 2013. 

 

[7]  “Timescale docs,” TimescaleDB - Timeseries database for PostgreSQL. [Online]. Available: 

https://docs.timescale.com/. [Accessed: 06-May-2023]. 

 

[8] “Introduction: Questdb,” QuestDB Blog RSS. [Online]. Available: https: 

https://questdb.io/docs/. [Accessed: 06-May-2023]. 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
19 

SCREENSHOT OF EXPERIMENTS 

MongoDB Naive Data Loading and query execution Results: 

 

 

 

 

 

 

 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
20 

 MongoDB Recommended Data Loading and query execution Results: 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
21 

   TimescaleDB Data Loading and query execution Results: 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
22 

   InfluxDB Data Loading and query execution Results: 

 

 

 

 

 

 

 

 

 

 

    



EVALUATING THE PERFORMANCE OF NOSQL AND TIME SERIES DATABASES USING TSBS  

 
23 

  QuestDB Data Loading and query execution Results: 

 

 

 

 

 

 

 

 

 


	Keywords: Time Series Data, TSBS, Time Series Database Suite, NoSQL, MongoDB, TimescaleDB, InfluxDB, QuestDB
	I. INTRODUCTION
	II. DELIVERABLE 1
	III. DELIVERABLE 2
	IV. DELIVERABLE 3
	V. DELIVERABLE 4
	VI. CONCLUSION
	REFERENCES
	SCREENSHOT OF EXPERIMENTS

